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ABSTRACT 

Mixture distributions characterize many physical measurements 

in which observable variates are generated from one of several 

component distributions. It is common to model such measurements 

as mixtures of normal distributions to estimate the model para- 

meters. Often the primary interest in applications of this 

methodology is on the estimation of the mixing proportion(s). 

Estimation of crop proportions from remotely-sensed spectral 

measurements is an important application of proportion estimation 

in which the component distributions are not necessarily 

symmetric. In this paper mixtures of component Weibull distribu- 

tions are investigated. Minimum distance estimation of the mixing 

proportion is the main focus of interest. 
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1. INTRODUCTION 

Mixture distributions arise when the distribution of 

(possibly vector-valued) observable variates can be modeled as 

f(x) Plfl(x) + P~~z(x) + . e .  + pmfm(x), (1.1) 

where the m densities fl(x) ,... ,fm(x) are referred to as component 
distributions and the pj (j - 1, ... ,m) are the mixing proportions 
(Cpj = 1). An important application of mixture modeling occurs in 

satellite remote-sensing of agricultural characteristics; speci- 

fically, the use of spectral measurements of light intensity to 

determine crop types. Typically four or more spectral intensities 

( x )  are taken an a portion of an agricultural field with the 

intent to estimate the proportions of corn, soybeans, or several 

other crops which are known to be grown in the region. The 

proportions are the mixture parameters pj and the spectral 

intensities or derived feature variables from each type of crop 

are represented by the component densities fj(x). 

Figure 1 represents a histogram of truncated "peak greenness" 

variates from a 5x6 nautical mile segment of agricultural land in 

Minnesota. Peak greenness is derivable (Badhwar 1984) from 

spectral readings taken several times during the groving season. 

The histogram displays 200 peak greenness values, each of which 

represents one of two component crops: corn or soybeans. The 

assumption one makes about the component densities is crucial to 



the satisfactory estimation of the crop proportions. 

[Insert Figure 11 

In order to illustrate this point, in Figure 2 we display 

graphs of two sets of (scaled) component distributions which yield 

mixture distributions similar to the histogram in Figure 1. In 

the upper mixture the component distributions are normal with pi = 

.7, and the standard deviation of the first component approxi- 

mately twice that of the second component. In the lower mixture 

the component distributions are "reversed" x2( 9) distributions 

with p1 = . 5  and both component standard deviations equal. These 

two mixture densities are so similar that histograms from the two 

mixture distributions would be visually indistinguishable; 

however, the mixture proportions are dramatically different for 

the two mixtures. Thus the ability to accommodate nonnormal 

component distributions is critical to the accurate estimation of 

mixture proportions. 

[Insert Figure 21 

In this paper we investigate the estimation of the mixture 

proportion p in a mixture of two Weibull components 

f(x) = pf1(x) + (1 - p)f2(x) , (1.2) 

where each component distribution is a three-parameter Weibull 

density: 
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The three-parameter Weibull density is investigated in this study 

becauee of the flexibility it affords in allowing different 

distributional shapes and different threshold (truncation) points. 

In Section 2 basic properties of the Weibull distribution and the 

estimation of its parameters are discussed. In Section 3 simula- 

tion results compare minimum distance estimation of the proportion 

p from the Weibull mixture (1.2) with both maximum likelihood and 

minimum distance estimation of p under the assumption that the 

components in (1 - 2 )  are normal densities. A brief discussion of 

identifiability for Weibull distributions is contained in Section 

4. Concluding remarks are made in Section 5. 

2. THE WEIBULL DISTRIBUTION 

The Weibull distribution has been widely used in recent years 

in the fields of reliability and quality control. Its popularity 

is largely due to its flexibility in describing distributions 

which are symmetric or skewed in either direction. The threshold 

parameter (Y in the Weibull density (1.3) allows the distribution 

to be shifted along the horizontal axis, an important property in 

the study of mixtures, g serves as a scale parameter, and 7 

determines the shape of the distribution. In Figure 3 Weibull 

densities for five sets of distributional parameters are graphed. 

From the figure it is apparent that the shape can vary drama- 

tically; in particular, the ability of the Weibull distribution to 

be skewed to the right or to the left is clearly indicated. 
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[Insert Figure 31 

The cumulative distribution function corresponding to the 

three-parameter Weibull is given by the cloaed-form expression 

P(x) = 1 - exp[-{(x-a)/B)yl (2.1) 

while the noncentral moments are given by (e.g., Dubey 1967) 

‘k-0 (r)ar-kBkr(kY-l+ k 1). (2.2) 

From (2.2) it is readily found that 

p = a + tw(Y-1 + 1) 

and (2.3) 

~2 = ~2{r(2~-1 + 1) - r2(+ + 1)). 

Dubey (1967) studied the relationship between the normal and 

Weibull distributions. He showed that when y is approximately 

3.60232 the standardized skewness parameter p3/{p;}”*, where pj 

is the jth central moment, is zero indicating symmetry; moreover, 

sup (FZ(t) - Fy(t)j = -0078 
-3StS3 

where FZ denotes the cumulative distribution function of the 

random variable Z-N(O,l) and Y is the standardized variate Y = 

(X-p)/u with p and u2 denoting the mean and variance of the 

Weibull variate X, equations (2.3). If y < 3.60232 the Weibull is 

skewed to the right, while if Y > 3.60232 it is skewed to the 

left. 

Previous research in the estimation of Weibull mixtures 

includes that of Kao ( 1 9 5 9 ) ,  who proposed a graphical procedure 



for  estimating the parameters of a Weibull mixture when one of the 

threshold parameters is assumed to be known and equal to zero. 

The estimation of the 6 remaining parameters is accomplished using 

a graphical procedure whose applicability to remote-sensing 

appears to be limited, although some of hie estimation rules could 

be automated. Rider (1961) and Falls (1970) propose estimating 

the parameters of a mixture of two-parameter Weibull components 

using the method of moments. Falls' procedure involves estimating 

the mixing proportion p using a graphical procedure similar to 

that of Kao and then estimating the remaining parameters from the 

moment equations. 

Maximum likelihood estinatore are obtained by differentiating 

the log-likelihood function 

with respect to each of the 7 model parameters, resulting in the 

likelihood equations (j = 1,2) 

p - n -1 If(llxi) 
( 2 . 4 )  
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where f(jlx) = pjfj(x)/f(x), fj(x) denotes the jth component 

density, f(x) is the mixture density, p i  = p, and p2 = l-p, and n 

is the sample size. Solving this set of equations for the maximum 

likelihood estimators is difficult due largely to equations (2.5) 

which are not in fixed-point form. 

Olssen (1979) discusses the numerical maximization of the 

likelihood function when the data are grouped into equally-spaced 

intervals and the first component threshold parameter is zero. He 

does not consider the more general framework of interest in this 

work; namely, two (possiblyj nonzero threshold parameters and 

nongrouped data. Looney and Bargmann (1982) also suggest a proce- 

dure which can be used with grouped data. Preliminary estimates 

of p, "1, "2, B 1 ,  and 82 are found for a grid of values of yl and 

y2: all possible combinations of 

yj = 1/5, 1/4, 1/3, 1/2, 2/3, 1.0, 1.5, 2.0, 3.0 4.0 5.0. 

For each (yl, y2) pair, the likelihood equations for grouped data 

are then solved for the remaining 5 parameters using a small 

number of iterations and the (yl, ~ 2 )  pair for which ln(L) is 

maximized is identified. With yl and 72 fixed at these values, 

maximum likelihood estimation for the remaining 5 parameters is 

then carried through to convergence. The Looney and Bargmann 

procedure for finding maximum likelihood estimates seems overly 

restrictive with respect to the selection of possible values of 

the shape parameter, while expansion of the search procedure to 
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allow for more shape parameter values could be prohibitive because 

of the wide range of possible values. 

Because of the computational difficulties of directly solving 

the likelihood equations, we consider the use of minimum distance 

(MD) estimation, first introduced by Wolfowitz (19571, for simul- 

taneously estimating the 7 parameters in the Weibull mixture. 

Woodward, et al. (1984) recently studied the use of MD estimation 

in the normal mixture model. They showed that MD estimation is 

easy to implement for mixtures of normal distributions and that MD 

estimators are superior to maximum likelihood estimators under 

symmetric departures from component normality. Since our use of 

Weibull components is due to the flexibility which they introduce 

into the model rather than an underlying theoretical justifi- 

cation, an eetimation procedure which is robust to departures from 

basic distributional assumptions is highly desirable. 

The minimum distance estimator of the parameter 8 (possibly 

vector-valued) is defined to be that value of 8 which minimizes 

the distance between He and Fn, where H -  (He: O E Q }  denotes a 

family of distributions depending on 8 ,  and Fn denotes the 

empirical distribution function; i.e., Pn(x) = k/n where k is the 

number of observations less than or equal to x. The family of 

distributions H is referred to as the projection model, where in 

this case 9 - (p, 41,  42, 01, 8 2 ,  r l ,  Y Z ) ,  and He(x) is the 

distribution function associated with a mixture of two Weibull 

components: 
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Note that in contrast to the situation in which the projection 

model is taken to be the mixture of two normals, Hg(x) in (2.8) 

has a closed form expression. 

The choice of distance function to be used to measure the 

distance between two distributions is a topic of current interest 

in the field of MD estimation. Woodward, et al. (1984) used the 

Cramer-von Mises distance, W2, given by 

where G1 and G2 are two distribution functions, and we have chosen 

to use this distance measure in the current study. The Cramer-van 

Mises distance between an empirical distribution function G1 * Fn 

and a projection family member G 2  = He can be simplified to yield 

the following expression: 

2 W2 = (12nF' + L{He(Yi) - (i-O.S)/n) , (2.10) 

where Yi denotes the ith sample order statistic. Since He exists 

in closed form, the MI) estimator of the mixture model parameters 

is easily obtained by using nonlinear least squares techniques to 

minimize (2.10). We perform this minimization with IMSL (1982) 

subroutine ZXSSQ which uses Narquardt's (1963) algorithm. 
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3. SIMULATION RESULTS 

From the discussion of the previous section, it appears that 

minimum distance techniques have potential value for estimating a 

mixture of three-parameter Weibull distributions, especially in 

terms of computational convenience. In this section we discuss 

the results of a computer simulation which was designed to 

evaluate the numerical capabilities of this method. 

In order to aBsess the merit of using "symmetry-flexible" 

projection families, the focus of this simulation is on the 

comparison of Weibull-based MD estimation with normal-based proce- 

dures. 

tions: normal, double exponential, t(4), t(2), and ~ ~ ( 9 ) .  Normal- 

based procedures should perform better than Weibull-based proce- 

durer when the mixture contains normal or unimodal, symmetric 

components; however, if the Weibull techniques are to be useful, 

they must produce reasonable results in this situation. In 

addition, when the component distributions are skewed, the 

Weibull-based procedures should result in more accurate proportion 

estimates. No simulation results are reported for mixtures of 

component Weibull distributions because we propose the Weibull as 

a flexible projection family and not necessarily as the true 

component distribution. 

Samples are generated from a variety of component distribu- 

For ease of presentation the two component distributions 

differ from each other only by a location shift. The mixture 
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distributions have mixing proportions of .25,  .50,  and .75 with 

varying degrees of separation between the two component distribu- 

tions. "Overlap" as defined by Woodward, et al. (1984) is a 

quantification of this separation. It is defined as the prob- 

ability of misclassification using the rule: 

Classify an observations x as: 

population 1 if x < xc 

population 2 if x 1 xc 

where without loss of generality population 1 is assumed to be 

centered to the left of population 2, and where xc is the unique 

point between p1 and p2 such that pfl(xc) = (l-p)f2(xc). The 

current study is based on overlaps of .03 and .lo. 
In Figure 4 the mixture densities associated with normal 

components are displayed. For each mixture, the weighted 

components pf 1 (x) and (l-p)f2(x) are also shown. The densities 

for p = .75 are not displayed here since their shapes can be 

inferred from those at p * .25. Likewise, parameter estimation 

for p = .75 is not included in the results of the simulations for 

the mixtures of symmetric component distributions. For comparison 

purposes mixture densities associated with the mixtures of x2(9) 

components are displayed in Figure 5. Note that although we refer 

to a mixture of ~ ~ ( 9 )  distributions, they are actually "shifted" 

chi-squares; i.e., the threshold parameter for one of the com- 

ponent distributions differs from zero. 
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[Insert Figures 4 and 51 

The simulation results are based on 100 samples of size n = 

200 from mixtures of the various component distributions. Uniform 

random numbers were generated for use in obtaining variates for 

component distributions from the IHSL (1982) multiplicative 

congruential uniform generator GGUBS. Normal deviates were 

generated using IMSL subroutine GGNPM, which uses the polar 

method, and t(v> variates were based on ratios of independent 

normal and ( x ~ ( v ) / v ) ~ / ~  variates, the chisquare variates obtained 

f tom IHSL subroutine GGCHS . Double exponential components were 

generated as ln(U), where U is a uniform (0,1) variate, with the 

positive or negative sign randomly assigned. Observations from 

standardized component distributions were randomly assigned to 

population 1 or population 2 depending on whether an independent 

uniform variate was less than or greater than p, respectively. The 

Btandardized components were then scaled and shifted to conform to 

the assigned distribution. All computations were performed on a 

CDC 6600 at Southern Methodist University. 

The normal component models were generated with pi = 0, u2 1 
= u2 = 1, and p2 positioned so that the desired overlap was 

obtained. Likewise, the mixtures for the other symmetric component 

distributions were generated vith one of the components centered 

at 0 and the other one shifted to the right by a sufficient amount 

to produce the desired overlap. The chisquare mixtures were 

2 



. 13 

generated with one of the threshold parameters fixed at zero and 

the other one shifted so that the desired overlap was obtained. 

For maximum likelihood and minimum distance estimation with normal 

component distributions, the natural constraints u2 > 0, u: > 

0, and 0 5 p 5 1 were imposed. Similarly, for minimum distance 

estimation using Weibull components the natural constraints 81 > 

0, 62 > 0, rl > 0, 1 2  > 0, an d 0  5 p 5 1 were imposed. 

1 

For each of the simulated samples, three sets of parameter 

estimates were obtained: 

(1) ML estimates based on a mixture of normal components (MLEN) 

(2)  HD estimates based on a mixture of normal components (MDEN) 

( 3 )  ND estimates based on a mixture of Weibull components 

(MDEW). 

Starting values for the iteration routines were calculated using 

the robust estimation technique outlined in Woodward et el. 

(1984). Basically this technique chooses p = .l, . 2  ,..., or .9  

depending on which value maximizes a standardized measure of the 

difference between the sample population medians. Once p is 

selected robust estimates of the samples means and variances are 

obtained for population 1 from the smallest n1 = np (rounded to 

the nearest integer) observations and for population 2 from the 

largest n2 = n - n1 observations. For the mixture of normal 

components these initial estimates are substituted for the model 

parameters. A similar procedure is used for the mixture of 

Weihll eeiii-,=centa except that  (a) tho shape paremetera are always 



initially set at Y j  3.6 (symmetry) and (b) the initial trunca- 

tion and scale parameters are obtained by inserting the robust 

estimates of the mean and variance in the left sides of equations 

(2.3) and solving them 14imultaneously (using y j  - 3.6). 
Although the HLEN and MDEN provide estimates of all 5 of the 

parameters of the normal mixture model and the MDEW produces 

estimates for all 7 parameters in the Weibull mixture model, only 

the results for the estimation of p will be shown. The mixing 

proportion is the parameter of primary interest and when the 

assumed component distributions are not the true component 

distributions which generate the data the remaining parameter 

estimates often do not have a meaningful interpretation. 

The results of the simulations are displayed in Table 1 to 6. 

For a given simulation model and estimation procedure, we obtain 

an estimate 6 of p, defined by 

where Si is the estimate of p for the ith sample and ns = 100 is 

the number of samples. Estimates of the bias and mean squared 

error (mse) of 5 are 

A 

bias - 
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As would be expected, all estimators at the .03 overlap 

perform better than at the .10 overlap. Tables 1 to 4 indicate 

that when the true component distributions are symmetric, all the 

estimators perform best when p 1.50. In general MLEN performs 

best for the normal mixtures in Table 1 while MDEN is superior for 

the mixtures of nonnormal symmetric components in Tables 2-4. MDEW 

performs well at p = .SO but is less satisfactory than assuming a 

normal component model when the simulation component models are 

symmetric and p = . 2 5 ,  although for many of the simulation models 

it performs comparably to MLEN. Overall Tables 1-4 suggest that 

minimum distance estimation with Weibull component models is no 

less satisfactory than the normal-based procedures for estimating 

the mixture proportion in mixtures of symmetric distributions. 

[Insert Table 1-41 

Figure 4 provides a visual explanation for the performance of 

the estimation schemes when the components are symmetric. The 

mixture distributions for p = . S O  display both bimodality and 

symmetry whereas the mixture for p = .25 and an overlap of .10 

does not even display bimodality. It is not surprising that the 

estimation procedures perform poorly for this latter mixture. 

Tables 5 and 6 display the simulation results for mixtures of 

x2( 9) component distributions. The negatively-skewed ("reversed") 

chisquare components used to generate the results reported in 

Table 6 are mirror-images (around the origin) of the distributions 
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shown in Figure 5 .  Minimum distance estimation with Weibull 

component distributions performs as well or better than the normal 

estimation schemes for all three mixing proportions and both 

component separations. The HDEW is especially satisfactory for 

the simulations with larger separation (overlap = .03). A visual 

explanation for the performance of the MDEW can be obtained from 

an examination of Figure 5. With large separation both the 

bimodality and the asymmetry are evident in the mixture. Minimum 

distance estimation with Weibull components thus can be expected 

to perform better than normal-based estimation procedures when the 

component distributions are eufficiently separated and asymmetry 

is pronounced. Notice that the chisquare mixtures with p - .50 

and overlap = .10 possess densities similar to those given in 

Figure 2. Since the normal-based estimation procedures assume 

symmetric components, the large bias shown i n  the HLEN and MDEN is 

understandable. 

4. PRACTICAL NONIDEWTIFIABILITY OF THE THREE-PARAMETER 

WEIBULL DISTRIBUTION 

Analyses of several of the simulations reported in the last 

section revealed an unexpected complication to the fitting of 

three-parameter Weibull distributione. Although we concentrate 

only on the estimation of the mixing parameter p in this paper, 

our simulation programs detail summary information on the estima- 

tion of all seven of the parameters in the Weibull mixture. For 



several samples the parameter estimates of u j  were large and 

negative while those for B j  were large and positive, eometimes 

each was greater than 1000 in magnitude. These parameter values 

were associated with a r j  smaller in magnitude than uj and B j  but 

substantially larger than 3.6. Although these parameter values 

appeared to be unacceptably poor, plate of the associated Weibull 

densities were consistent with the data, with only very small 

probability being associated with the interval between aj and 0. 

Further investigation of these sample estimates indicated 

that whenever two Weibull models with very different parameter 

sets possessed similar densities, the two distributions were 

characterized by 

(a) left skewness 

(b) similar ratios of scale to shape parameters 

(c) similar sums of threshold and scale parameters. 

It can be shown analytically that two models sharing the 

three properties mentioned above will have similar modes, heights 

at the modes, skewness, and variances. In Figure 6, we display 

four  Weibull densities with parameter sets satisfying the above 

three conditions. Note that for all four densities, Y > 3.6, B l y  

.I 4, and u t 8 = 30. The densities associated with the second, 

third, and fourth parameter sets are almost indistinguishable. 

[Insert Figure 61 

We conclude from these observations that the three-parameter 
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Weibull suffers from practical nonidentifiability. The nonidenti- 

f iability is theoretically impermissible since Weibull distribu- 

tions with unequal threshold parameters (a1 < 02, ray) cannot have 

identical densities. These densities would obviously differ 

between 01 and a2 where fl(x) > 0 and f2(x) = 0. Our immediate 

concern is the extent to which this practical lack of identifi- 

ability affects parameter estimation in the Weibull mixture model. 

If only proportion estimates are desired, there seems to be no 

real effect. It is clear, however, that component Weibull 

parameter estimates can be very misleading. 

5 .  CONCLUDING RplARKS 

Three-parameter Weibull distributions offer the flexibility 

of representing many different shapes of probability distribu- 

tions, both symmetric and asymmetric. Prior to the successful 

implementation of this methodology several remaining research 

problems must be resolved. 

The simulations reported in Section 3 indicate that minimum 

distance estimation of the mixing proportion using three-parameter 

Weibull distributions as the projection family can provide accep- 

table parameter estimates if the separation between the component 

distributions is adequate. In such situations both symmetric and 

asymmetric distributions can be modeled, the latter ability 

offering superior performance to normal-based procedures when 

asymmetry is pronounced. Additional simulations (not reported) 



. 19 

were performed on component distributions which differ in both 

location and scale. The results were in general agreement with 

those reported in Section 3. Simulations were also performed on 

mixtures of ~ ~ ( 9 )  distributions for which one component was 

positively-skewed and one was negatively-skewed. These mixtures 

tended to mask the asymmetry and the overall conclusions drawn 

from these simulations were similar to those for symmetric 

components. 

Further research is needed to assess the estimation efficacy 

of model parameters other than the mixture proportion. When using 

the 3-parameter Weibull distribution as a projection family, all 

the remaining parameters may have little meaning with respect to 

the true underlying component distributions. If so, the practical 

nonidentifiability of the three-parameter Weibull distribution may 

be of no consequence; however, when the true underlying distribu- 

tion closely approximates the Weibull, indeed if the Weibull is 

the true theoretical component distribut ion, then this practical 

nonidentifiability is of concern and techniques must be devised to 

compensate for its presence when one desires to estimate all of 

the model parameters. 

In several of the simulation reeults reported in Section 3 

and in Woodward, et al. (1984) the starting values were more 

accurate and/or precise than the maximum likelihood and minimum 

distance estimators. Another instance where crude initial para- 

meter choices appeared to be as good as maximum likelihood 
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estimates for mixtures of normal or Weibull components is the 

examples in Olssen (1979). This ability of simple robust proce- 

dures to equal or outperform asymptotically optimal estimation 

techniques warrants further investigation. 

Finally, there is much work to be done in extending these 

results to mixtures of more than two component distributions. The 

Weibull distribution coupled with minimum distance estimation is 

technically restricted only by the ability to find the minimum of 

equation (2.10) in a computationally efficient manner. Since MlEW 

tended to require more computer time than the normal-based esti- 

mators, computational efficiency is an important consideration in 

higher-dimensional modeling. 
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Table 1. Comparison of Proportion Estimation Techniques, 
Mixtures of Normal Components 

Overlapr.10 Overlap - .03 
6 biPs d e  6 bi?s miie 

(a) p = .25 
MLEN .27 .02 .02 34 .25 . 00 .0015 
MIEN .31 .06 .0450 .26 .Ol ,0022 
MDEW .33 .08 .0449 .29 .04 .0105 
Starts .30 .05 .008 9 .30 .05 .0053 

(b) p = .50 
MLEN .50 . 00 .0200 .50 . 00 .0017 
MDEN .51 .Ol .0209 .50 . 00 .0019 
MDEW .49 -.01 .0281 .51 .Ol .0063 
Starts .51 .Ol .0074 .51 .Ol .0055 



. 

Table 2. Comparison of Proportion Estimation Techniques, 
Mixtures of Double Exponential Componente 

Overlap - .10 Overlap - .03 
5 biPs miie  6 bi2s m9e 

(a) p = .25 
MLEN .42 .17 .0905 .28 .03 .0054 
MDEN .27 .02 .0078 .29 .04 . 00 50 
MDEW .47 .22 ,0663 .40 .15 .0272 
Starts .33 .08 .0115 .33 .08 .0099 

(b) p - .SO 
MLEN .50 . 00 .0277 .50 . 00 .0015 
HDEN .50 00 .0040 .so . 00 .0015 
MDEW .49 -.01 .0092 .SO . 00 .0015 
Starts .51 .Ol .0066 .SO . 00 .002 1 



Table 3. Comparison of Proportion Estimation Techniques, 
Mixtures of t(4) Components 

Overlap .10 Overlap = .03 

5 bigs mPe $ bigs m^se 

(a) p = .25 
MLEN .35 .10 .0767 .28 .03 .0073 
MDEN .28 .03 ,0189 .26 .Ol . 001 3 
MDEW .41 .16 .0574 .34 .09 .0137 
Starts .33 .08 .0111 .33 .08 .0091 

(b) p = .SO 
MLEN .52 .02 .OS80 .50 . 00 .0018 
MDEN .51 .Ol .0071 .50 . 00 .0015 
MDEW .so . 00 .0070 .49 - .01 .0022 
Starts .SO . 00 .0066 .w . 00 .002 1 



Table 4. Comparison of Proportion Estimation Techniques, 
Mixtures of t(2) Components. 

Overlap = .10 Overlap = .03 

6 bise m i i e  6 bi?s miie 

(a) p = .25 
HLEN .50 .25 .1876 .33 .08 .0348 
MDEN .29 .04 .0203 .27 .02 .0018 
UDEW 47 .22 .0687 .35 .10 . 01 44 
Starts .30 .05 ,0091 .35 .10 .0123 

(b) p = .M 
MLEM .53 .03 .1446 .51 .Ol .037 3 
MDEN .49 -.01 .0055 .51 .Ol .0014 
MDEW .SO .oo .0052 .50 . 00 .0012 
Starts .51 .Ol .008 3 .49 -.01 ,0020 



T a b l e  5. Comparison of Proportion Estimation Techniques, Mixtures 
of Positively-Skewed Chisquare ( 9 )  Components 

Overlap = .10 Overlap - .03 

(a) p = .25 
MLEN .53 .28 .2190 .17 -.08 .0102 
MDEN .47 .22 ,1712 .16 -.09 .0095 
MDm .47 .22 .lo1 7 .31 .06 .0131 
Starts .46 .21 . loo9  .26 * 01 .0029 

( b )  p = .50 
MLEN .25 -.25 .0656 .40 
MDEN .27 -.23 .0620 .41 
HDEW .43 -.07 .02 32 .51 
Starts .49 -.01 .0080 .47 

-.lo .0111 
-.09 .0089 
.Ol .004 3 

-.03 .0052 

(c) p - . 7 5  
MLEN .47 -.28 .08 30 . 6 3  -.12 .0198 
MDEN .45 -.30 . lo42  .61 -.14 .02 38 
MDEW .50 -.25 . lo29  .70 -.05 .0118 
Starts .69 -.06 .0109 .66 -.09 .0125 



. 

Table 6. Comparison of Proportion Estimation Techniques, Mixtures 
of Negatively-Skewed Chisquare (9) Components. 

Overlap = .10 Overlap = .03 

6 bise mSe i; b i b  miie 

(a) p = .25 
MLEN .55 .30 .0926 .37 .12 .0188 
HDEN .56 .31 .1111 .38 .13 .0215 
MDEW .47 .22 .0723 .30 .05 .0074 
Starts .32 .07 .1117 .33 .08 ,0117 

MLEN 
(b) p = .50 

.73 .23 ,0641 .58 
MDEN .73 .23 .0600 .58 
MDEW .62 .12 .0269 .52 
Starts .so . 00 .0069 .50 

.08 

.08 

.02 . 00 
.0089 
,008 1 
.002 7 
.0048 

( c )  p 9 .75 
MLEN .49 -.26 .1988 .83 .08 .0072 
HDEN .58 9.17 ,1563 .83 .08 .0105 
HDEW .63 -. 12 .0671 .78 .03 .0030 
Starts .56 -.19 .0853 .72 -.03 .0037 
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Figure 2. Two Mixture Distributions 
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Figure 4 .  Mixture Densities with Normal Components 
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Figure 5. Mixtures Densities with x (9) Components 
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